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Introduction
• Survival analysis is the study of survival times and of the factors

that influence them.

• Examples of studies with survival outcomes include the following:

i. Clinical trials

ii. Prospective Studies

iii. Retrospective Observational Studies
• Example of survival times include:

• Time from birth until death
• Time from birth to development of lung cancer
• Time to relapse

Dr. Mutua Kilai | SPA 2403: SURVIVAL ANALYSIS 2/34



Contents of Survival Analysis

a. Estimation of the survival distribution

b. Comparisons of the survival distributions of various treatments

c. Examining the factors that influence survival times (Regression
models in survival context)
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Features of Survival Data

The key features of survival data include:
• The response variable is a non-negative discrete or continuous

random variable that represents the time from a well defined
origin to a well defined event

• Censoring that arises when starting or ending events are not
precisely defined.
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Types of Censoring
• Censoring occurs when the event of interest is not observed for

some subjects before the study is terminated.

• We present three types of censoring models. Let T1, T2, ..., Tn
be independent and identically distributed with distribution
function F

i. Right Censoring
a. Type I censoring

b. Type II censoring

ii. Left Censoring

iii. Interval censoring
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Pictorial Representation
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Right Censoring

• Right censoring occurs when a subject leaves the study before an
event occurs, or the study ends before the event has occurred.

• For example, we consider patients in a clinical trial to study the
effect of treatments on stroke occurrence.

• The study ends after 5 years. Those patients who have had no
strokes by the end of the year are censored.
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Type I Censoring

• In Type I censoring the censoring times are pre-specified.

• An example is a smoking cessation study where by design each
subject is followed until relapse (return to smoking) or 180 days
or whichever comes first. The subjects that did not relapse
within the 180 days were censored at that time.
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Type II Censoring

• This type of censoring occurs when the experimental objects are
followed until a pre-specified fraction have failed.

• Such design is rare in bio medical studies but are used in
engineering set ups where time to failure is of primary interest.

• An example is where a study stops after for example 25 out of
100 devices are observed to fail. The rest 75 are censored.
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Left Censoring

• Left censoring is when the event of interest has already occurred
before enrollment. This is very rarely encountered.

• For example, in a medical study someone dies before the drug
trial begins.
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Interval Censoring

• Interval-censoring occurs in survival analysis when the time until
an event of interest is not known precisely (and instead, only is
known to fall into a particular interval).
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Censoring Occurence

• Loss to Follow Up: Patient moves away. We never see him
again. We only know he has survived from entry date until he
left. So his survival time is greater than the observed value.

• Drop Out: Bad side effects forces termination of treatment. Or
patient refuses to continue treatment for whatever reasons.

• Termination of Study: Patient is still “alive” at end of study.
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Goals of survival data

• The goals of survival analysis are to:

i. Estimate the survival distribution

ii. To compare two or more survival distributions

iii. To assess the effects of a number of survival factors on survival
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Examples of Survival data

• In this entire unit Survival Analysis we use the asaur package.

• To install the package use:

install.packages("asaur")
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Example 1
• This is a Phase II (single sample) clinical trial of Xeloda and

oxaliplatin (XELOX) chemotherapy given before surgery to 48
advanced gastric cancer patients with paraaortic lymph node
metastasis.

Table 1: Example 1

time Weeks delta
23 42 1
24 43 1
25 43 0
26 46 1
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Basic Principles of Survival Analysis

• Let T denote a non-negative random variable representing the
lifetimes of individuals in some population.

• Let F (.) denote the cumulative distribution function of T with
corresponding probability density function f (.). Then

F (t) = P(T ≤ t) =
∫ t

0
f (x)dx (1)
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Survival Function
• The probability that an individual survives to time t is given by

the survivor function.

S(t) = P(T > t) = 1 − F (t) =
∫ ∞

t
f (x)dx (2)

• The function is also called reliability function.

• S(t) is a monotone decreasing function with S(0) = 1 and
S(∞) = 0

• We can express the pdf as:

f (t) = dF (t)
dt = −dS(t)

dt (3)
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Hazard Function
• The hazard function specifies the instantaneous rate of failure

at T = t given that the individual survived up to time t and is
defined as:

h(t) = lim∆t→0+
P(t < T ≤ t + ∆t|T > t)

∆t = f (t)
S(t) (4)

• The hazard rate is a rate, rather than a probability. It can
assume values in [0, ∞).

• The hazard function is related to the PDF and the survival
function by:

h(t) = f (t)
S(t)
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• Integrating h(t) over (0, t) gives the cumulative hazard function
H(t) given as

H(t) =
∫ t

0
h(u)du = − log

(
S(t)

)
(5)

• Thus S(t) can be expressed as:

S(t) = exp
(

− H(t)
)

• The pdf of T can be written as:

f (t) = h(t) exp
(

−
∫ t

0
h(u)du

)
(6)
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Types of Hazard Functions

• Model (a) has an increasing hazard rate. It arises when there is a
natural aging war.

• Model (b) has a decreasing hazard rate. Arises in patients
experiencing certain types of organ transplant.

• Model (c) has a bathtub-shaped hazard rate. Appropriate for
populations followed from birth.
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Figure 1: Types of hazard functions
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Mean Value

• For a non-negative random variable T the mean value written

E (T ) =
∫ ∞

0
tf (t)dt

can be shown to be:

E (T ) =
∫ ∞

0
S(t)dt (7)
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Mean Residual Life

• The mean residual life at time u denoted by mrl(u).

• For individuals of age u, this parameter measures their expected
remaining lifetime. It is defined as:

mrl(u) = E (T − u|T > u)

• For a continuous random variable it can be verified that

mrl(u) =
∫ ∞

u S(t)dt
S(u) (8)
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Parametric Survival Distributions

• Several survival distributions exists for modeling survival data.

• Exponential Distribution

• Weibull Distribution
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Exponential Distribution
• The p.d.f is given as:

f (t) = λeλt

• The hazard function
h(t) = λ

• The cumulative hazard function is given as:

H(t) =
∫ t

0
= h(u)du =

∫ t

0
λdu = λt|t0 = λt

• The survival function:
S(t) = exp−H(t) = e−λt
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• The mean of an exponential distribution is given by:

E (T ) =
∫ ∞

0
S(t)dt =

∫ ∞

0
e−λtdt = 1

λ

• The median is the value of t that satisfies

0.5 = e−lambdat

so that
tmed = log 2

λ
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Weibull Distribution
• The constant hazard of the exponential distribution makes it

difficult to work with as it is not appropriate for describing
lifetimes of humans or animals.

• The weibull distribution which has a decreasing and increasing
hazard rate is more appropriate.

• The hazard function is given as:
h(t) = αλαtα−1 (9)

• The cumulative hazard and survival function are given
respectively by:

H(t) = (λt)α

•
S(t) = e−(λt)α

• The mean and median of the weibull distribution are given
respectively by:

E (T ) = γ(1 + 1/α)
λ

• And

tmed = [log(2)]1/α

λ
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weibHaz <- function(x, shape, scale) dweibull(x, shape=shape,
scale=scale)/pweibull(x, shape=shape, scale=scale,
lower.tail=F)
curve(weibHaz(x, shape=1.5, scale=1/0.03), from=0, to=80,
ylab='Hazard', xlab='Time', col="red")
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Maximum Likelihood Estimation
• If we know that a random variable T has an exponential

distribution with parameter λ = 0.03 we can directly compute
the probability that T exceeds a particular value.

• Suppose that we have a series of observations t1, t2, ..., tn from
an exponential distribution with unknown parameter λ, then we
can estimate the parameter λ via maximum likelihood
estimation.

• Assuming that there is no censoring, the likelihood takes the
general form

L(λ; t1, t2, ..., tn) = f (t1, λ)× f (t1, λ)× ...× f (tn, λ) =
n∏

i=1
f (ti , λ)

(10)
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• If some observations are censored, we have to make adjustments.

• For an observation of an observed death, we put in the pdf.

• But for a right-censored observation we put in the survivor
function indicating that the observations is known only to exceed
a particular value.

• The likelihood in general takes the form:

L(λ; t1, .., tn) =
n∏

i=1
f (ti , λ)δi S(ti , λ)(1−δi ) =

n∏
i=1

h(ti , λ)δi S(ti , λ)
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• The expression means that when ti is an observed death, the
censoring indicator is δi = 1 and we enter the pdf factor.

• When ti is a censored observation we have δi = 0 and we enter
the survival function.

• For the case of exponential distribution we substitute the
expressions for the pdf and survival functions and simplfy as
follows:

L(λ) =
n∏

i=1

[
λe−λti

]δi [
e−λti

]1−δi

= λde−λV (11)
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• We have the total number of deaths

d =
n∑

i=1
δi

• and the total amount of time of patients on the study

V =
n∑

i=i
ti

• We can maximize the log-likelihood as follows:
l(λ) = d log λ − λV

• Getting first derivative and equating to zero we get

λ̂ = d
V

• The second derivative of the log-likelihood

l ′′ = − d
λ2 = −I(λ)

Dr. Mutua Kilai | SPA 2403: SURVIVAL ANALYSIS 32/34



Using Standard mathematical statistics theory, the inverse of the
information matrix is approximately the variance of the m.l.e

Var(λ̂) ≈ I−1(λ) = λ2

d = d
V 2
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Thank You!
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